This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 19 February 2013, At: 13:06

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T

3JH, UK

Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl17

Synthesis and Properties of Some Liquid Crystalline Polysiloxanes

H. Richard $^{\rm a}$, M. Mauzac $^{\rm a}$, H. T. Nguyen $^{\rm a}$, G. Sigaud $^{\rm a}$, M. F. Achard $^{\rm a}$, F. Hardouin $^{\rm a}$ & H. Gasparoux $^{\rm a}$

^a Centre de Recherche Paul Pascal, Université Bordeaux I, 33405, Talence, Cedex, France Version of record first published: 13 Dec 2006.

To cite this article: H. Richard, M. Mauzac, H. T. Nguyen, G. Sigaud, M. F. Achard, F. Hardouin & H. Gasparoux (1988): Synthesis and Properties of Some Liquid Crystalline Polysiloxanes, Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 155:1, 141-150

To link to this article: http://dx.doi.org/10.1080/00268948808070359

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., 1988, Vol. 155, pp. 141-150 Photocopying permitted by license only © 1988 Gordon and Breach Science Publishers S.A. Printed in the United States of America

SYNTHESIS AND PROPERTIES OF SOME LIQUID CRYSTALLINE POLYSILOXANES

H. RICHARD, M. MAUZAC, H. T. NGUYEN, G. SIGAUD, M.F.ACHARD, F.HARDOUIN, H.GASPAROUX Centre de Recherche Paul Pascal, Université Bordeaux I 33405 Talence Cedex, France

<u>Abstract</u> Series of side chain polymethylsiloxanes are synthesized by systematically varying the spacer length, the inter-ring linkage and the free tail in the mesogenic moieties. The mesomorphic properties are studied by optical microscopy, differential scanning calorimetry and X-ray scattering. General properties are established.

_NTRODUCTION

A large number of polymers containing mesogenic side chains and polysiloxane backbone have been prepared and characterized 1-7. In a previous paper8 we report the synthesis of polymethylsiloxanes substituted with p-(polymethylen)oxy-phenyl p-substituted benzoates. In the side group, the length of the flexible spacer, the length and the polarity of the terminal group are systematically varied. Aimed toward a better understanding of the role of the chemical structure on the mesomorphic properties we present in this work the synthesis and characterization of polymers including a range of new central linkages and terminal groups*.

^{*}Some compounds, previously studied by other authors^{1,2} are synthesized again to be compared with our own products.

MATERIALS

The general formula of the studied polymers is:

$$\begin{array}{c} \operatorname{CH}_{3} \\ \mid \\ \left(\operatorname{CH}_{3}\right)_{3} \operatorname{Si} \left[\begin{array}{ccc} \operatorname{O} & - & \operatorname{Si} & \left(\operatorname{CH}_{3}\right)_{3} \\ \mid & & & & \\ & \mid & & \\ & \mid & & & \\ & \mid & & \\ & \mid$$

$$n = 3-11$$
, $Z = OCO$, COO , $OCH2$, $X = H$, $CH2$, $OCH2$, $NO2$, CN

*In previous papers $^{8-10}$ the polymers are labelled "P_{n,cN}" or "P_{n,m}" corresponding to unspecified Z = OCO and X = CN or OC_mH_{2m+1}.

The mesogenic substituents are obtained by several classical steps:

1) For benzoate series 11-13

2) For benzyloxyphenyl series:

$$R_1 O - OH + B_r - CH_2 - O - X \xrightarrow{K_2 CO_3} R_1 O - O CH_2 - O - X$$

The commercial products are obtained from Aldrich and used without further purification.

Most of the synthesized compounds are purified on a silica chromatographic column, using various (ether/hexane) mixtures as eluent.

The vinyl moiety is attached to the polymer backbone (from Merck) following a standard hydrosilylation reaction as previously described ⁸. The extent of completion is assessed by ¹H-NMR.

CHARACTERIZATION OF THE MESOPHASES

The mesogenic behaviour of the polymers was investigated by a Leitz-Dravert polarizing microscope equipped with a Mettler FP 52 hot stage. X-ray patterns for powder samples were obtained by a high temperature Guinier Camera (Hüber) using the $\text{CoK}\alpha_1$ radiation. Cooling from the isotropic state the samples of polymers were analyzed throughout the stability range of their mesophases.

The glass transition and/or the melting temperatures were determined by DSC (Dupont 990); calorimetric data at the clearing points were also reported.

CN	Vinyl Molety S S S S S S S S S S S S S S S S S S S	(42) . [17.6] . [42] .	100 100 100 100 100 100 100 100 100 100	.176 .176 .174 .174	æ	н	AR (TCC) Jg-1 4.6 2.0	Polymer index index Polymer Po
000 000 000 000 000 000				.176			2.0	Рэ, ски, осо Рэ, оси Рэ, ски, осо Рэ, ски, осо Рэ, ски, осо
000 000 000 000 000				.123			2.0	Р3.0 СВ 3.0 С0 Р3. СВ 3.0 С0 Р3.8.0 С0 Р4. СК.0 С0
, , , , , , , , , , , , , , , , , , ,				.139				P3.8.000 P4.000 P4.000
000 000 000 000 000		· · · · ·		.174				P3. B. 000 P4. CN. 000 P4. CN. 000
000 000 000 000 000 000				.174				P4, CN. 000
000 000 000 000		• •		.139		•	٥.	P4. CN. COO
000 °CH		. 10					2.6	
000 0CH						•	_	P4, CN, OCH 2
OCH,		. 20	1	.165		•	2.7	P4.NO2, OCO
		٠.	15					P4.NO2.OCM2
осн, осо , 91.7		7 . [51.2] .		. 74	.104	•	1.6	P4.0CH3,0CO
, 000 . 78		. [48.5] . 15	ı		. 95		2.4	Р4. осн3. соо
CH ₃ OCO . 58.3		, 4	ı		. 59	•	2.0	P4, CB3, 0C0
CN 0C0 .103.7		.[91.8]. 24	104	.184		-	5.6	Ps. CN, OCO
004 . 54.5			106			•		PS.CN.OCH2
OCH,			7.5				-	Ps. Noz. och2
		73.6 . 4	71	.122		•	3.0	Рз.оси .осо
CH3 000 1 46.5		9 7.04.	109			-		Р5. си, осо

=	×	2			Phase	Phase transition temperature 'C	temp	eratur	ں و					
			M	Vinyl Moiety S _c S _A	SA	N N	F	F."		Polymer S	×	н	Polymer △H(Tc¢) Jg ⁻¹	Polymer index
	Š	000 000 000H	. 81.8 . 59.3 . 41			.[76.5]. .[62.3].	27 16 0	82 44 45		.190 .170			6.0 8.5	Pe. CN. OCO Pe. CN. COO Pe. CN. OCH
9	NO2 OCH3	000 000 000	. 64 . 54.9 . 62.7			. 56.4 .	8 4 7	. 1 1	. 40	. 110	.105		4.8 3.4 1.7	Pe.No. OCH Pe.OCH OCO
	CH	000	. 67.8			. [29]	0	58			. 67	•	1.5	P6.CH3.UCO
	N.	000 00H	. 72		.[65.6]	. 80.4	25	50		.190			8.5 10.0	Pe.cw.oco Pe.cw.och ₂
∞	NO OCH CH3	000 000 000	. 67 . 51 . 37.5 . 44.5			. 63	-14 -5 0	- 45 68 61		. 92 .127 . 73	. 83		6.0 4.5 2.0	Рв. No. 2 . осн 2 Рв. оси 3 . осо Рв. си 3 . осо Рв. н. осо
10	CS BOCH SCH	000	. 56 . 60.8		. 82.6	. 83	18 -5	108		.195			5.5	P10.CN.OCU P10.OCH3.OCU
-11	CN OCH CH	000	. 60.8 . 66.4 . 61.5	. [47]	. 88	. [69.9	17 24 -	82 56 74	. 119	.201 .134			9.2 6.1 5.0	P11.CH.0CO P11.0CH3.0CO P11.CH3.0CO

[] : monotropic transition

RESULTS AND DISCUSSION

The chemical constitution and the polymorphism are reported in the Table :

The coupling of mesogenic molecules to the polymer backbone always increases their clearing temperature ($Tc\ell$) and tends to form higher ordered phases. Despite the fact that the vinyl moieties are mostly nematogens, only few polymers keep this character and their common feature is to exhibit a smectic A phase. If a non mesogenic moiety is linked (for example samples with $Z = OCH_2$) mesogenic polymers can be obtained.

The polymers are generally semi-crystalline materials and relatively low glass transition temperature (Tg \leq 40°C) is observed. Both glass transition and melting (Tm) temperatures increase with the polarity of the X end.

We successively discuss the influence on the polymer mesogenic efficiency of each parameter (spacer n, terminal substituent X, linking unit Z in the core structure) keeping the other ones constant:

- * As the spacer length (n) increases we notice regular trends in the liquid-crystal behavior:
 - All the transition temperatures increase reaching a limiting value and an usual even-odd effect is observed on Tcl and Tm.
 - The nematic tendency disappears and the smectic properties are found to become more marked. Similarly in the case of low molecular weight mesogens, the extension of an aliphatic chain

gives direct smectic-isotropic transitions.

- A smectic C phase may occur.
- * There is a strong influence of X on the polymor-phism:
 - Without terminal substituent (X = H) the compounds do not exhibit mesomorphic properties, as is commonly found with low molecular weight liquid crystal material.
 - X = OCH₃ and more easily X = CH₃ often induce nematic phases for even n homologues.
 - Incorporation of strongly polar ends $(X = NO_2, CN)$ only leads to smectic phases. It generally promote high T_{I-S_A} values which are almost the same for both terminal groups.
 - In fact, the clearing point is connected with the polarity of X and gradually increases when X is successively CH₃, O CH₃, a strong polar group (NO₂, CN).
- * The nature of the central linkage Z is also of great importance:
 - A flexible linkage (Z = 0 CH₂) makes the transition temperature to drop or removes the mesomorphous character.
 - Replacement of Z = OCO by Z = COO gives more frequently nematic phases and diminishes the thermal stability of the liquid crystalline phases. The variation of the polarity due to this modification of Z could explain this result¹⁴.
 - In addition, we observe that the direction of the central dipoles plays a more important role

than the Z flexibility on the tendency to give a partial "bilayer" structure in the smectic phases of cyano-substituted polysiloxanes, as illustrated on the Figure 1:

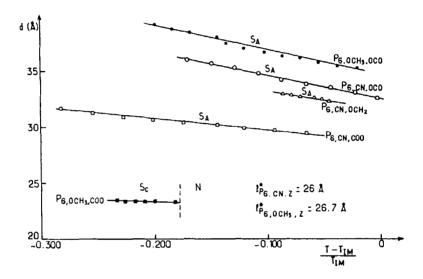


FIGURE 1. Variation of the layer spacing (d) with reduced temperature (T_{IM} : isotropic-mesophase transition temperature) for $P_{6,CN,2}$ and $P_{6,OCR_3,2}$ series.

 $\boldsymbol{\ell}^\star$: Molecular length of the side chain measured in the most extended conformation.

The central group partial "bilayer" smectic efficiency order is:

Such a consideration can be applied to polysiloxanes with a poorly polar terminal group OCH_3 in the pendant side chain: the replacement of Z = - OCO - by Z = - COO - leads to the loss of the bilayering arrangement. As a result, a monolayer S_C phase occurs with a small tilt angle $(<10^{\circ})^{15}$ instead of a "partial bilayer" S_A phase 8 .

REFERENCES

- H. Finkelmann, G. Rehage, <u>Makromol. Chem.</u>, Rapid Commun., <u>1</u>, 733 (1980).
- G.W. Gray, D. Lacey, G. Nestor, M.S. White, <u>Makromol.</u> Chem., Rapid Commun., 7, 71 (1986).
- R.M. Richardson, N.J. Herring, <u>Mol. Cryst. Liq. Cryst.</u>, 123, 143 (1985).
- H.J. Coles, R. Simon, <u>Mol. Cryst. Liq. Cryst.</u>, <u>102</u>, 75 (1984).
- 5. H. Sackmann, H. Schubert, Z. Chem., 26, 66 (1986).
- H. Ringsdorf, A. Schneller, <u>Makromol. Chem.</u> Rapid Commun., 3, 557 (1982).
- V.P. Shibaev, N.A. Plate, <u>Advances in Polymer Sciences</u>, Springer Verlag, 60-61, 173 (1984).
- M. Mauzac, F. Hardouin, H. Richard, M.F. Achard,
 G. Sigaud, H. Gasparoux, <u>Eur. Polym. J.</u>, <u>22</u>, 2, 137 (1986).
- 9. G. Sigaud, F. Hardouin, M. Mauzac, H.T. Nguyen, <u>Phys.</u> <u>Rev. A</u>, <u>33</u>, 1 (1986).
- M.F. Achard, F. Hardouin, G. Sigaud, M. Mauzac, Preliminary comm., <u>Liquid Crystals</u>, <u>1</u>, 203 (1986).

- E. Klarman, L.W. Gatyas, V.A. Shtermov, <u>J. Amer. Chem.</u> Soc., 54, 298 (1932).
- B.A. Jones, J.S. Bradshaw, M. Nishioka, M.L. Lee, J. Org. Chem., 49, 4947 (1984).
- M.A. Apfel, H. Finkelmann, G.M. Janini, R.J. Laub, B.H. Lühmann, A. Price, W.L. Roberts, T.J. Shaw, C.A. Smith, Anal. Chem., 57, 651 (1985).
- 14. J.W. Goodby, T.M. Leslie, P.E. Gladis, P.L. Finn, <u>Liquid Crystals and Ordered fluids</u>, Ed. A.C. Griffin, J.F. Johnson, Plenum Press, New York, London, 89 (1984).
- E. Nachaliel, E.N. Keller, D. Davidov, H. Zimmermann,
 M. Deutsch, Phys. Rev. Lett., 58, 896 (1987).